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ABSTRACT
Tomato is the most popular and cultivated crop in the world. Nevertheless, the quality 
and quantity of tomato crops have been declining due to various diseases that afflict 
tomato crops. Hence, it becomes necessary to detect the disease early to prevent crop 
damage and increase the yield. The proposed model in this article predicts the infected 
tomato leaf images (9 classified diseases and also healthy class) obtained from the Plant 
Village dataset. In this model, Transfer learning was used to extract features from images 
by VGG16, yielding a high dimension of 25088 features. Overfitting is a commonly 
anticipated problem because of the higher dimensionality of data. To mitigate this problem, 
the authors have adopted a novel dimensional reduction-based technique: filter methods, 
feature extraction techniques like Principal Components Analysis (PCA), and the Boruta 
feature selection technique of wrapper methods. This adoption enables the proposed 
model to attain a significantly improved high accuracy of 95.68% and 95.79% in MLP and 
VGG16, respectively, by reducing its initial dimension on the tomato dataset containing 
18160 images across 10 classes.

Keywords: Boruta algorithm, filter methods, plant leaves dataset, principal component analysis, tomato leaf 

disease classification, VGG16

INTRODUCTION 

Tomato (Lycopersicon esculentum) is 
an extensively farmed agricultural crop. 
This crop’s growing season lasts about 
90 to 150 days, with typical daytime 
average temperatures of 18 to 25°C and 
nighttime temperatures of 10 to 20°C 
(Gadekallu et al., 2021). Excess humidity 
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and reduced sunlight exposure negatively impact crop quality. Generally, excess humidity 
renders crops vulnerable to pests, diseases, and decay. Hence a dry climate is necessary for 
producing high-quality tomatoes. Crops ought to be closely monitored for signs of fungi, 
bacteria, and virus invasion. Necessary preventive actions should be in place to check and 
control diseases early. It can be achieved by roping in experts and field workers to detect 
and identify diseases at an early stage, albeit the task might prove to be laborious and 
economically unviable when there is high acreage involved. It becomes essential to make 
use of technology that could significantly reduce human intervention for performing real-
time monitoring with the highest precision possible. The recent developments in the deep 
learning (DL) models make it possible to detect and identify diseases in tomato plants at 
an early stage.   

Precision farming may be used to combat diseases and pests that affect crops. 
Sensor networks, remote sensing, robotics, computer vision, machine learning, and DL 
are employed in precision farming. Computer vision forms an integral part of precision 
agriculture. For plant disease recognition and classification in agriculture, computer vision 
DL-based algorithms have been applied. Various studies have used DL agriculture models to 
diagnose crop problems (Guo et al., 2003). DL networks contain several layers of complex 
formation that increase the model’s accuracy. Nodes of one layer are interconnected with 
another node of layers to form classification-based architectures and require additional 
computational power for training. Convolution neural networks (CNNs) are broadly used 
in the DL architecture framework. CNN is involved in many applications, such as image 
classification and object recognition (Tang & Wu, 2016) which significantly improves 
image classification in several fields, such as agriculture. The present study proposed a 
multi-level dimension reduction (filter methods, principal component analysis (PCA) and 
Boruta feature selection) method to obtain optimal features and classify tomato plant leaf 
diseases using VGG16, multi-layer perceptron (MLP), and machine learning algorithms 
(MLA). This study might help farmers identify the diseases early and prevent loss so that 
the crop yield would increase. The tomato leaf dataset for the present study was obtained 
from the plant village dataset (Mohanty et al., 2016). The framework was used to classify 
the infected and healthy images of the tomato leaves. The performance of CNN-based 
models, VGG16, MLP, and MLA, was analyzed based on different evaluation metrics, 
such as training accuracy, validation accuracy, and weighted average F1 score. 

This study primarily focused on the declined dimension in a multi-level model, 
as extensive data on the number of samples and features from images were collected. 
Classifying the images with the extracted features from a high-dimensional feature vector 
is critical. In some cases, the number of features (F) is more compared to the number 
of samples (S) (F>S), which is known as the curse of dimensionality (CoD). Due to 
the huge dimension, the dimensionality of the image data needs to be reduced using 
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dimension reduction techniques that help with image classification without losing the 
most significant information. Hence, this study focused primarily on addressing the high 
dimensionality of data. The machine learning (ML) or DL models were trained effectively 
on high dimensionality data; however, the models encounter problems, such as overfitting, 
requiring more training time, consumption of significant resources, high model complexity, 
containing trainable parameters, and taking up a large amount of storage space. A multi-
level dimension reduction algorithm was proposed in this study to overcome these issues. 
It consisted of multi-level dimension reduction methods, such as filter methods of feature 
selection in dimension reduction as level 1, principal components analysis (PCA) of feature 
transformation as level 2, and Boruta wrapper method as level 3.

REVIEW OF LITERATURE

Computer vision with data science is a trending technology in agriculture for the 
classification of the disease of plants. In the early days, traditional MLA was used to identify 
plant leaf diseases in agriculture as machine learning methods were unable to classify the 
images due to large-scale image datasets.

Durmuş et al. (2017) trained AlexNet (Krizhevsky et al., 2012) and SqueezeNet 
(Iandola et al., 2016) on the 18160 tomato leaf images taken from the plant village dataset 
and classified the tomato diseases using the supercomputer Nvidia Jetson Tx1; the training 
and validation presented an accuracy of 94.3% and 95.65% using SqueezeNet and AlexNet, 
respectively. 

Tm et al. (2018) proposed an approach that includes data acquisition, preprocessing 
and classification. In the present study, a variation of LeNet was applied to the tomato 
dataset. It consisted of approximately 18160 images belonging to ten different classes of 
tomato leaf diseases. Keras, a neural network API (Application Programming Interface) 
written in Python, has been used for the model implementation. The highest validation 
accuracy of 94.8% was obtained over 30 epochs of training. 

Durmus et al. (2017) proposed deep-CNNs, such as ResNet50, for tomato leaf disease 
detection using PyTorch. A DL technique with transformation and augmentation was used 
to overcome the overfitting problem and improve the model’s performance. The proposed 
model yielded 97% accuracy after fine-tuning the weights for the ResNet model. 

Gadekallu et al. (2021) proposed a novel PCA-whale optimization algorithm (WOA) 
hybrid optimization technique for significant features extracted from the 18160 tomato leaf 
images. The deep neural network was trained on the optimal features with 94% accuracy. 
The present study used multi-level three dimension reduction techniques (filter method, 
feature transformation (PCA), and Boruta of wrapper methods) to obtain the optimal 
features. The final results improved and were compared to the previous results on the same 
number of tomato leaf images in the tomato dataset. 
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The objective of this study was to reduce the high-dimension features into optimal 
features using a multi-level dimension reduction algorithm. With the high dimension of data, 
problems, such as overfitting, high training time, model complexity, trainable parameters, 
and large storage space of the model, occurred. Thus, to prevent all these problems and 
improve accuracy, the study proposes three types of dimension reduction techniques to 
build an efficient agricultural tomato leaf disease classification model. 

METHODOLOGY

The detailed methodology for the tomato leaf disease classification framework is given 
below as follows:

Figure 1 illustrates the classification framework consisting of six stages: data 
acquisition, preprocessing data, feature extraction stage, dimensionality reduction stage, 
classification stage, and selecting the optimal prediction model.
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Figure 1. Architecture framework for classification of tomato leaf images

Dataset 

In the initial stage, the images of tomato disease were taken from the plant village dataset 
(Mohanty et al., 2016). A total of 54,345 photos of 14 crops were included in this plant 
village collection. These crops include various fruits and vegetables, such as apples and 
blueberries. Images of tomato leaves were utilized in this investigation. Table 1 shows the 
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number of images for each class of tomato leaves, as illustrated in Figure 2. Ten categories 
of tomato images, including those considered healthy, were available. In the present 
study, 18160 images of the tomato dataset were split in the ratio of 90:05:05 for training, 
validation, and testing, respectively.   

Table 1 
Dataset

S. No Name of the class No. of images
Tomato__Bacterial spot 2127

Tomato_Early_blight 1000
Tomato__Late blight   1909
Tomato_ Leaf Mold 952

Tomato_Septoria_leaf_spot 1771
Tomato_Spider_mites Two-spotted_spider_mite 1676

Tomato___Target Spot 1404
Tomato___Tomato_Yellow_Leaf_Curl_Virus 5357

Tomato___Tomato_mosaic_virus 373
Tomato___healthy    1591

Total number of images 18160

Bacterial spot  
          Early_blight   

                
             Healthy Late_blight  Leaf_Mold  

Septoria_leaf_spot  Spider_mites Two-
spotted_spider_mite 

Target_Spot           Tomato mosaic_virus Tomato_Yellow_Leaf 
_Curl_Virus 

 Figure 2. Sample tomato leaf images of different classes of the plant village dataset

Preprocessing

In the preprocessing, the size of the input image was 256×256 pixels, which was resized 
into 224×224 pixels. The labels of the image dataset were categorical. Thus, label encoding 
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(Cerda & Varoquaux, 2020) and one-hot encoding (Li et al., 2018) were applied for 
numerical values. The normalized pixel values of the image were placed between 0 and 1.  

Feature Extraction 

In the feature extraction stage, the standard VGG16 (Simonyan & Zisserman, 2014) model 
was applied to extract the features of image data, as shown in Figure 3. The two feature 
extraction methods were as follows: First, 13 convolutional layers of the VGG16 model 
were applied, and the high-dimensional features of the images were extracted, as shown 
in Figure 4. Second, the transfer learning method (Tammina, 2019) was applied to 13 
convolutional layers of VGG16 for feature extraction (Figure 5). 
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Figure 3. Standard VGG16 model architecture 

Figure 4. Applying dimension reduction techniques between 13 convolutional layers and 3 fully connected 
layers of VGG16
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Figure 5. Applying dimension reduction methods between transfer learning on 13 convolutional layers of 
VGG16 and 3 fully connected layers 

Dimension Reduction Technique 

In the feature extraction stage, high dimensional features of 25088 were obtained with 
13-convolutional layers of the pre-transfer learning stage on VGG16. If the classification 
models were trained using MLA, MLP, and three fully connected layers of VGG16 with 
high dimensional features, the models faced the following issues: the possibility that the 
model is biased towards overfitting, model computation will be high, and the performance 
of the models may be reduced due to curse of dimensionality. In order to overcome these 
problems, the model proposed a multi-level dimension reduction technique, such as filter, 
PCA, and Boruta, so that less significant features were eliminated from the images. 

Filter Methods for Non-Correlated Features

Variance and correlation statistical methods were selected to obtain the optimal features.

Removing Constant Features

Constant features contain only one value, and the variance threshold value is 0. Totally of 
994 constant features were identified from 25088 high-dimensional features (Doquire & 
Verleysen, 2013). However, the constant features do not affect the models and are removed, 
leaving 24094 high-dimensional features.

Removing Quasi-Constant Features

Quasi-constant features are similar to constant features with a variance threshold value of 
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0.01 (Ma et al., 2018). A total of 13175 quasi-constant features were identified and excluded 
from 24094 high dimensional features, retaining 10919 features.

Removing Correlated Features
Correlated features create redundancy and should be removed (Chuanlei et al., 2017). 
Three different threshold values, such as 0.6, 0.7, or 0.8, were typically applied to identify 
the correlated features. Depending on the dataset requirements, the threshold value of 0.8 
was applied, and 136 correlated features were identified and eliminated. Finally, 10783 
non-correlated features were identified in filter methods of dimension reduction level 1, 
as shown in Figure 6. 

 

  
                                         Variance  
                                        Thr              threshold=0                                                                                                             

       
 
 

 
Correlation>0.8 Variance 

threshold=0.01 25088 
No. of Features 

extracted  
 

994 
Constant 
features 

13175 
Quasi constant 

features 

10783 
Non-correlated  

features 
(Dimension Reduction Level-1)   

 

136 
correlated 
features 

Figure 6. Filter method for non-correlated features at dimension reduction level 1

Application of the Feature Transfer Method-PCA

PCA was used for feature extraction. This method created new features by projecting existing 
features (Mudrova & Procházka, 2005). PCA is a dimensionality reduction technique to 
transform into a new lower-dimension dataset without losing critical information. 

The dataset consisted of ‘X’ independent variables (dimensions) and one target variable. 
So, the total dimension size was ‘X+1’.

Step 1: Standardize or scale the input dataset ‘X’ using Z-score.
Z=                                                                                                   (1) 

Initially, the mean and standard deviation were calculated for each independent variable ‘X’. 

= mean of X = X =                                                 (2)   

Standardized value of Xi= (Xi- mean of X)/Standard deviation of X
    

Std (x)=standard deviation of X 
                                              (3)

Step 2: Covariance matrix of the scaled data without the target variable was calculated 

          
Cov(x,y) = 

                (4)

Step 3: Eigenvalues were computed
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Step 4: Eigenvectors were defined
Step 5: Existing input datasets were projected into new dimensions using eigenvectors.

With 99% of the variance, PCA formed a new set of 5720 components from 10783 
non-correlated features (Figure 7).  

Figure 7. Number of components explained 99% of variance vs. cumulative explained variance

In Figure 7, principal components were represented on the horizontal axis and 
cumulative experience variance on the vertical axis at 99% of explained variance ratio; 
subsequently, 5720 principal components were obtained. In Figure 8, 10783 non-correlated 
features of dimension reduction level 1 were transformed into 5720 principal components.

 
  

      PCA>99%  
 
 

  
 

10783 
Non-correlated 

features 
(DR-Level-1) 

5720 
Principal components 

(DR-Level-2) 

Figure 8. Conversion of non-correlated features at level 1 into principal components at level 2

Application of the Wrapper Methods (Boruta Feature Selection Algorithm)

The wrapper feature selection method identified optimal features using MLA (Chen & Chen, 
2015). Herein, the random forest classification algorithm was used as a base model for the 
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Boruta algorithm (Kursa & Rudnicki, 2010). The algorithm consisted of the following steps:
1. In the first step, Boruta begins by cloning the supplied collection of original 

features. These were referred to as shadow features to distinguish them from the 
originals. The values of the shadow features were then rearranged to exclude the 
correlations.

2. In the second step, the significance features were validated using the mean decrease 
impurity (MDI), and the shadow features were trained using the random forest 
(RF) classifier. MDI determined each cloned feature’s relevance.

3. The Z score was used to determine whether the original feature provided had a 
higher Z score than the maximum MDI score of the shadow feature. 

4. ‘Hits’ were assigned to a vector with a high Z value. When the number of iterations 
was reached, a hit table was generated at the end of the process.

5. A feature with the highest Z score was marked as essential in each algorithm 
iteration. The final collection of features was derived from the hit vector.

All the procedures from the beginning to this point were repeated until the qualities 
of all the offered features were identified. 

 

 
   
                                                          Boruta Algorithm 
                                                                        
 
 
 

5720  
Principal 

components 
(DR-Level-2) 

1145 
Optimal features 

(DR-Level-3) 

Figure 9. Conversion of principal components at level 2 into optimal features at level 3 with the Boruta algorithm

A total of 5720 principal components were obtained in dimension reduction level 2. 
Then, the Boruta feature selection algorithm was applied to these principal components, 
and 1145 optimal features were obtained at dimension reduction level 3 (Figure 9). 

The proposed multi-level dimension reduction algorithm is shown in Figure 10. It 
represented an overview of the multi-level dimension reduction using a raw image as 
input; subsequently, optimal features were generated. The final feature was considered 
the reduced dimension available from the multi-level dimension, which was considered a 
maximum hit in the Boruta-based method.

Classification Algorithms  

A total of 1145 optimal features were obtained in the Boruta feature selection algorithm. 
The classification algorithms were applied to these features.
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Input: Images

image  resize.image

dimension  calculate_Dim(shape.Image)

Initialize Reduced_Dim dimension

Initialize Level  None

If ‘Reduced_Dim = = dimension’ then:

image.Weight  image. VGG16(ImageNet)

Reduced_Dim image.Weight

add(level,1)

Return(Reduced_Dim)

If ‘Reduced_Dim < dimension’ & ‘level= =1’ then:

Remove constant features:

Set feature_filter. threshold = 0

Constant_features feature_filter (Reduced_Dim.shape)

subtract (Reduced_Dim, Constant_features)

Remove  Quasi_constant features:

Set feature_filter. threshold = 0.01

Quasi_features featurefilter(Reduced_Dim.shape)

subtract(Reduced_Dim, Quasi_features)

Remove correlated features:

Set feature_filter.threshold = 0.8

correlated_features features_filter(Reduced_Dim.shape)

subtract(Reduced_Dim, correlated_features)

add (level,1)

Return (Reduced_Dim)

If ‘Reduced_dim < dimension’ & ‘level= =2’ then:

Set variance =99

Components  PCA(Reduced_dim, variance)

Reduced_dim components

add (level, 1)

Return(Reduced_Dim)

If ‘Reduced_Dim < dimension’ & ‘level==3’ then:

Initialize n  0

Max_Iteration max (n, 50)

Repeat upto ‘Max_Iteration’ or ‘Reduced_dim’

cloned_dim[i]  Reduced_dim[i]

suffle.feature(cloned_dim[i])

merge (Cloned_dim[i], Reduced_dim[i])

Z_Score [i] = Radom_forest(reduced_dim)

MDI_Score [i] = Random_forest(cloned_dim)

Hit_count calculate (Z_Score [i] > max (MDI_Score[i]))

Add (n, 100)

Final_Features max (Hit_Count)

Figure 10. The Proposed multi-level dimension reduction algorithm 
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MLA

Classification is the process of organizing a given set of data into classes. Classification 
algorithms map the input data to classes, and the model predicts the input class. All MLA, 
such as logistic regression (Dreiseitl & Ohno-Machado, 2002), decision tree classifier 
(DTC) (Ali et al., 2012), random forest classifier (RFC) (Ali et al., 2012), Ada boost 
classifier (ABC) (Khammari et al., 2005), K Nearest Neighbor (KNN) (Zhang & Zhou, 
2005), support vector classifier (SVC) (Awad & Khanna, 2015) and XG Boost (XGB) 
(Torlay et al., 2017) are not suitable for high dimension without any reduction techniques. 
Thus, we proposed a model of the eased task as a classifier. Finally, 1145 optimal features 
were fed to classification algorithms, the models were trained, and the results were 
compared with the above algorithms. 

MLP

MLP is an example of an artificial neural network. It is applied broadly to solve several 
problems, such as pattern recognition and interpolation (Noriega, 2005). MLP is a neural 
network with fully connected multiple dense layers. The MLP network comprises input, 
hidden, and output layers that perform the computational work.

The neurons of the MLP are prepared to perform backpropagation learning for any 
classification and forecast job in the network. Several studies have applied different 
optimization methods for MLP. Ramchoun et al. (2016) presented a different approach for 
optimizing MLP architecture to instruct the network with a backpropagation algorithm. 
The inputs to the neuron (x) feature and the amounts in terms of weight (w) were computed 
for classification. The activation function (f) was included in the sum of the outcome to 
construct the output in an MLP. MLP network wherein the input layer contains nodes equal 
to the number of features extracted. The MLP’s output layer uses softmax activation for 
multi-class classification, while the hidden layer uses relu activation functions. If a dataset 
has ‘m’ classes, the output layer uses ‘m’ nodes for model prediction. 

Three Fully Connected Layers of VGG16 

The VGG16 architecture consisted of 16 layers, of which 13 convolutional layers were 
explained in the feature extraction phase. The remaining three fully connected layers were 
used for classification purposes. 2/3 of the fully connected layers consisted of 4096 nodes, 
and the third fully connected layer had the softmax activation function for classification, 
which consisted of several labels (classes) (Gao & Pavel, 2017). In the present study 
dataset, ten classes were available.
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RESULTS AND DISCUSSION 
The performance measures classification models are described with respect to the 
experimental setup and hyperparameter tuning. Subsequently, the classification performance 
of the proposed model was evaluated and compared to the three fully connected layers of 
VGG16, MLP, and state-of-the-art MLA.

Performance Evolution
The performance of the classification models was evaluated using a confusion matrix, 
as shown in Figure 11. The evaluation parameters in the confusion matrix are accuracy, 
precision, recall (sensitivity), F1_Score, true-positive (TPi), false-positive (FPi), true-
negative (TNi), false-negative (FNi), and class CK. The subscript ‘k’ indicates the number 
of classes, and ‘i’ values from 0 to ‘K’. PVC1 means predicted values of class C1, and AVC1 
means the actual values of class C1. This study calculated precision, recall, and F1_Score 
over the validation dataset. The training and validation datasets were imbalanced. Thus, 
performance measures, such as accuracy, weighted-average-based precision, recall, and 
F1 score (Sokolov & Lapalme, 2009; Behera et al., 2019), were used to evaluate the 
performance of the classification models. The performance measurements of accuracy, 
W.A.P, W.A.R, and W.A.F1, were defined as follows.

                                                                  (5)

Weighted Average Precession (W.A.P)   =                                     (6)

Weighted Average Recall (W.A.R) =    
                    (7)

Weighted Average F1_Score (W.A.F1) =             (8)
 

 PREDICTED CLASSES  

A
C

TU
A

L 
C

LA
SS

ES
  C1 C2 … CK  

C1 TP1    AVC1  

C2  TP2   AVC1  

… … … … …  

CK    TPK AVC1  

  PVC1 PVC2  PVCK  

Figure 11. Confusion matrix of multi-class
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Experimental setup and hyper-parameter setting

The present experiment was executed on Jupiter notebook support to implement ML and DL 
algorithms in Python 3.6.7. The hardware configuration is given in Table 2. The experiment 
used transfer learning on VGG16 for extracting features and multi-layer perception for 
classification. Table 2 describes the hardware and software configuration used to train a 
proposed model for tomato disease classification.  

Table 2
Machine specifications

S. No Hardware and software Characteristics
1 Memory (RAM) 16 GB

2 Processor Intel(R) Core i7-10875H 
CPU@ 2.30 GHz

3 Graphics (GPU) NVIDIA GeForce RTX 
2070-8GB

4 Operating system Windows 10 and 64 bits

5 Integrated development 
environment (IDE) Jupiter Notebook

Hyperparameters are values determined during an algorithm learning process that were 
optimized to improve the model results. The early stopping condition and dropout ratio 
were applied for activation, and the nodes of the hidden layers were deactivated while 
model training to address the model overfitting problem. The hyperparameters of VGG16 
selected in the classification layer were Relu, softmax activation functions in hidden layers, 
and the output layer. SGD (Stochastic Gradient Descent) optimizer, along with learning 
rate, was 0.0001, dropout was 0.5, decay was 1e-6, momentum was 0.9, patience was 
30, the minimum delta was 0.0001, batch size was 8 and epochs were 97. The selected 
hyperparameters of MLA, such as SVC, were C=10, gamma=0.0001and kernel=‘rfb’. 

VGG16 has three fully connected layers. Among these, two dense layers were 
fully connected and comprised 4096 nodes. The third layer consisted of 10 neurons 
corresponding to the number of classes of the dataset. The final layer was the soft-max 
layer. Hyperparameters, such as activation functions like ‘relu’ and ‘softmax,’ dropout, 
learning rate, decay, momentum, optimizer, batch size, and epochs, are shown in Table 3, 
and hyperparameters of MLA are shown in Table 4.
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Table 3
Hyperparameters of DL

S. No Hyperparameter Values
1 Activation functions Relu, softmax
2 Optimizers SGD, Adam
3 Learning rate 0.1,0.001,0.0001,0.00001
4 Dropout 0.2,0.3,0.4,0.5
5 Decay 1e-3, 1e-4, 1e-5, 1e-6
6 Momentum 0.8,0.9
7 Patience 15,20,30
8 Minimum delta 0.01, 0.001, 0.0001
9 Batch size 8,16,32,64,128,256

10 Epochs 100, 500, 1000

Table 4
Hyper-parameters of machine learning algorithms

S. No Machine learning models Hyperparameter Values

1 ABC
Learning rate [0.01, 0.001,

0.001, 0.0001]
n_estimators [300, 500, 700, 900]

2 DTC

Criterion [Gini, entropy]
max_depth Range (1, 10)

min_samples_leaf Range (1, 5) 
min_samples_split Range (1, 10) 

3 KNN
Metric

[‘minkowski’, 
‘euclidean’,  
‘manhattan’] 

n_neighbors [5, 7, 9, 11, 13, 15] 
Weights [‘uniform’, ‘distance’] 

4 LR

C [100, 10, 1.0, 0.1, 0.01] 
max_iter [100, 500, 700, 900] 
Penalty [l1, l2]

solver [‘newton-cg’, ‘lbfgs’,  
‘liblinear’] 
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Analysis of Experimental Results

The experimental results were analyzed in five steps. In the first step, the model trained 
the three fully connected layers of VGG16, MLP, and MLA on dimension reduction level 
1 of 10783 non-correlated features. In the second step, the model trained the three fully 
connected layers of VGG16, MLP, and MLA on dimension reduction level 2 of 5720 
principal components. In the third step, the model trained the three fully connected layers 
of VGG16, MLP, and MLA on dimension reduction level 3 of 1145 optimal features. In the 
fourth step, the results among the above three-dimension reduction levels were compared, 
and the best level was selected. In the fifth step, the proposed work results were compared 
to the previous study on the same dataset. 

From the first multi-level dimension reduction, the results were obtained from three 
fully connected layers of VGG16, MLP, and MLA of 10783 non-correlated features, 5720 
principal components, and 1145 optimal features, respectively.  

Results of 10783 Non-Correlated Features 

The three fully connected VGG16, MLP, and MLA layers on non-correlated features at 
dimension reduction level 1 are shown in Tables 5, 6, and 7, respectively. 

Table 4 (Continue)

S. No Machine learning models Hyperparameter Values

5 RFC

Criterion [Gini, entropy] 
Max_depth [4, 5, 6, 7, 8]

max_features [‘auto’, ‘log2’,
‘sqrt’, 0.33]

min_samples_leaf Range (1,5) 
min_samples_splt Range (1,10) 

n_estimators [200, 500,700,900]

6 SVC

C [0.1, 1, 10, 100, 1000] 

Gamma [1, 0.1, 0.01, 0.001, 
0.0001] 

Kernel [‘rbf’]

7 XGB

Learning rate [0.01, 0.05, 0.1] 
Max_depth [3, 5, 7, 9]

gamma [0, 0.1, 0.001]
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Table 6 
Results of MLP on 10783 optimal features

Table 5
Results of VGG16 on 10783 non-correlated features

T.T
(H:M:S) T.A (%) T.L V.A (%) V.L

V.S (903)

CP WP

0:23:55 99.94 0.006 94.91 0.18 857 46

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) S.S T.P Tr.P N.T.P

95.04 94.91 94.88 465 MB   60,993,546 60,993,546 0 

Note. T.T-Training time; T.A-Training accuracy; T.L-Train loss; V.A-Validation accuracy; V.L-Validation 
loss; V.S-Validation samples; CP-Correct predictions; WP-Wrong predictions; W.A.P-Weighted average 
precession, W.A.R- Weighted average recall; W.A.F1_score- Weighted average F1_Score; S.S-Storage space; 
T.P-Total parameters; Tr. P-Trainable parameters; N.T.P- Non-trainable parameters

T.T
(H:M:S) T.A (%) T.L V.A (%) V.L

V.S (903)

CP WP

0:14:49 100.0 0.001 94.80 0.17 856 47

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) S.S T.P Tr.P N.T. P

94.93 94.80 94.80 88.3 MB 11,572,746 11,572,746 0

Note. T.T-Training time; T.A-Training accuracy; T.L-Train loss; V.A-Validation accuracy; V.L-Validation 
loss; V.S-Validation samples; CP-Correct predictions; WP-Wrong predictions; W.A.P-Weighted average 
precession, W.A.R- Weighted average recall; W.A.F1_score- Weighted average F1_Score; S.S-Storage space; 
T.P-Total parameters; Tr. P-Trainable parameters; N.T.P- Non-trainable parameters

Table 7
Results of MLA on 10783 optimal features

Classification
model

Training
time 

(H: M:S) 

Training
accuracy 

(%)

validation
accuracy 

(%)

Total 
validation 
samples 

(903)

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) 

Storage 
space

CP WP

LR 0:03:43 98.81 94.35 852 51 94.41 94.35 94.32 843 KB

RFC 2:20:09 100.0 82.17 742 161 82.38 82.17 80.52 107 MB 

DTC 0:03:10 59.77 54.93 496 407 50.62 54.93 51.60 18.1 KB 
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Results of 5720 Principal Components

The three fully connected layers of VGG16, MLP, and MLA were applied on non-correlated 
features at dimension reduction level 2, and the results are shown in Tables 8, 9, and 10, 
respectively. 

Table 8  
Results of VGG16 on 5720 principal components

Classification
model

Training
time 

(H: M:S) 

Training
accuracy 

(%)

validation
accuracy 

(%)

Total 
validation 
samples 

(903)

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) 

Storage 
space

CP WP

ABC 0:35:59 40.80 40.53 366 537 42.71 40.53 30.81 173 KB 

KNN 0:00:37 100.0 84.50 763 140 85.82 84.50 83.57 2.05 GB 

SVC 0:42:40 99.16 95.13 859 44 95.23 95.13 95.12 328 MB 

XGB 0:41:58 100.0 92.13 832 71 92.08 92.14 92.03 3.71 MB 

Table 7 (Continue)

Note. T.T-Training time; T.A-Training accuracy; T.L-Train loss; V.A-Validation accuracy; V.L-Validation 
loss; V.S-Validation samples; CP-Correct predictions; WP-Wrong predictions; W.A.P-Weighted average 
precession, W.A.R- Weighted average recall; W.A.F1_score- Weighted average F1_Score; S.S-Storage space; 
T.P-Total parameters; Tr. P-Trainable parameters; N.T.P- Non-trainable parameters

T.T
(H:M:S) T.A (%) T.L V.A (%) V.L

V.S (903)
CP WP

0:30:04 100.0 0.006 95.13 0.15 859 44

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) S.S T.P Tr.P N.T.P

95.22 95.13 95.11 307 MB 40,255,498 40,255,498 0

Note. T.T-Training time; T.A-Training accuracy; T.L-Train loss; V.A-Validation accuracy; V.L-Validation 
loss; V.S-Validation samples; CP-Correct predictions; WP-Wrong predictions; W.A.P-Weighted average 
precession, W.A.R- Weighted average recall; W.A.F1_score- Weighted average F1_Score; S.S-Storage space; 
T.P-Total parameters; Tr. P-Trainable parameters; N.T.P- Non-trainable parameters

Table 9 
Results of MLP on 5720 principal components

T.T
(H: M:S) T.A (%) T.L V.A (%) V.L

V.S (903)
CP WP

0:04:06 99.99 0.002 95.24 0.18 860 43
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Results of 1145 Optimal Features

The three fully connected layers of VGG16, MLP, and MLA were applied on non-correlated 
features at dimension reduction level 2, and the results are shown in Tables 11, 12, and 
13, respectively.  

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) S.S T.P Tr.P N.T.P

95.33 95.24 95.22 60.8 MB 7,967,754 7,967,754 0

Table 9 (Continue)

Note. T.T-Training time; T.A-Training accuracy; T.L-Train loss; V.A-Validation accuracy; V.L-Validation 
loss; V.S-Validation samples; CP-Correct predictions; WP-Wrong predictions; W.A.P-Weighted average 
precession, W.A.R- Weighted average recall; W.A.F1_score- Weighted average F1_Score; S.S-Storage space; 
T.P-Total parameters; Tr. P-Trainable parameters; N.T.P- Non-trainable parameters

Table 10
Results of MLA at 5720 components

Classification
Model

Train
time 

(H: M:S) 

Training
accuracy 

(%)

Validation
accuracy 

(%)

Total 
validation 
samples 

(903)

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) 

Storage 
space

CP WP

LR 0:04:11 98.91 93.24 842 61 93.23 93.24 93.18 447 KB 

RFC 2:09:01 99.98 75.19 679 224 75.05 75.19 73.26 119 MB 

DTC 0:03:12 59.11 59.03 533 370 54.61 59.03 55.65 18.1 KB 

ABC 0:35:12 40.94 41.75 377 526 27.79 41.75 30.67 173 KB 

KNN 0:00:15 100.0 84.61 764 139 86.06 84.61 93.73 1.08 GB 

SVC 0:26:37 99.07 95.13 859 44 95.23 95.13 95.12 329 MB 

XGB 0:44:11 100.0 86.05 777 126 85.94 86.05 85.49 4.63 
MB 

Note. T.T-Training time; T.A-Training accuracy; T.L-Train loss; V.A-Validation accuracy; V.L-Validation 
loss; V.S-Validation samples; CP-Correct predictions; WP-Wrong predictions; W.A.P-Weighted average 
precession, W.A.R- Weighted average recall; W.A.F1_score- Weighted average F1_Score; S.S-Storage space; 
T.P-Total parameters; Tr. P-Trainable parameters; N.T.P- Non-trainable parameters
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Table 12
Results of MLP on 1145 optimal features

Table 11
Results of VGG16 on 1145 optimal features

T.T
(H:M:S) T.A (%) T.L V.A (%) V.L

V.S (903)

CP WP

0:58:37 100.0 0.0016 95.79 0.15 865 38

Note. T.T-Training time; T.A-Training accuracy; T.L-Train loss; V.A-Validation accuracy; V.L-Validation 
loss; V.S-Validation samples; CP-Correct predictions; WP-Wrong predictions; W.A.P-Weighted average 
precession, W.A.R- Weighted average recall; W.A.F1_score- Weighted average F1_Score; S.S-Storage space; 
T.P-Total parameters; Tr. P-Trainable parameters; N.T.P- Non-trainable parameters

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) 

S.S T.P Tr.P N.T. P

95.88 95.79 95.80 164 MB 21,516,298 21,516,298 0

T.T
(H: M:S) T.A (%) T.L V.A (%) V.L

V.S (903)
CP WP

0:04:59 99.98 0.0067 95.68 0.16 864 39

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) S.S T.P Tr.P N.T.P

95.71 95.68 95.66 115 MB 15,193,098 15,193,098 0

Note. T.T-Training time; T.A-Training accuracy; T.L-Train loss; V.A-Validation accuracy; V.L-Validation 
loss; V.S-Validation samples; CP-Correct predictions; WP-Wrong predictions; W.A.P-Weighted average 
precession, W.A.R- Weighted average recall; W.A.F1_score- Weighted average F1_Score; S.S-Storage space; 
T.P-Total parameters; Tr. P-Trainable parameters; N.T.P- Non-trainable parameters

Table 13
Results of MLA at 1145 optimal features

Classification
model

Training
time 

(H:M:S) 

Train
accuracy 

(%)

Validation
accuracy 

(%)

Total 
validation 
samples 

(903)

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) 

Storage 
space

CP WP

LR 0:00:46 96.43 92.91 839 64 92.86 92.91 92.83 90.3 
KB 

RFC 0:25:29 99.96 77.30 698 205 78.49 77.30 75.45 125 
MB 



Pertanika J. Sci. & Technol. 31 (2): 813 - 841 (2023) 833

A Novel Approach for Multi-Level Dimensional Reduction

Classification
model

Training
time 

(H:M:S) 

Train
accuracy 

(%)

Validation
accuracy 

(%)

Total 
validation 
samples 

(903)

W.A.P
(%)

W.A.R
(%) 

W.A.F1
(%) 

Storage 
space

CP WP

DTC 0:00:36  59.11 59.02 533 370 54.59 59.03 55.64 18.1 
KB 

ABC 0:06:38  40.95 41.75 377 526 27.79 41.75 30.67 173 
KB 

KNN 0:00:02 100.0 85.94 776 127 87.09 85.94 85.19 223 
MB 

SVC 0:02:51 97.97 94.35 852 51 94.44 94.35 94.35 60.9 
MB 

XGB 0:08:43 100.0 87.04 786 87 86.80 87.04 86.59 4.74 
MB 

Table 13 (Continue)

Note. T.T-Training time; T.A-Training accuracy; T.L-Train loss; V.A-Validation accuracy; V.L-Validation 
loss; V.S-Validation samples; CP-Correct predictions; WP-Wrong predictions; W.A.P-Weighted average 
precession, W.A.R- Weighted average recall; W.A.F1_score- Weighted average F1_Score; S.S-Storage space; 
T.P-Total parameters; Tr. P-Trainable parameters; N.T.P- Non-trainable parameters

Tables 14 and 15 and Figure 12 show the comparison between the without and with 
dimension reduction results and the optimal results of the highest validation accuracy 
of 95.79% and weighted average F1_Score of 95.80% obtained at level 3 of dimension 
reduction by three fully connected (fc) layers of VGG16. Training and validation loss curves 
of 3fc of VGG16 and MLP without and with dimensional reduction levels are shown in 
Figures 13(a) to (d). The lowest validation loss was identified at level 3 by 3fc of VGG16 
in Figure 13(d). Similarly, the training and validation accuracy curves of 3fc of VGG16 and 
MLP without and with dimension reduction levers are shown in Figures 14(a) to (d). The 
highest validation accuracy of 95.79% was identified at level 3 by 3fc of VGG16, as shown 
in Figure 14(d). The confusion matrix of 3fc of VGG16, SVC, and MLP without and with 
dimension reduction levels are shown in Figures 15(a) to (e). Of the 906 validation samples 
of images (0.05%), 865 correct predictions (CP) and 38 wrongly predicted (WP) samples 
are identified in level 3 by 3fc of VGG16 and shown in Figure 15(e). The classification 
reports of 3fc of VGG16, SVC, and MLP without and with dimension reduction levels 
are shown in Figures 16(a) to 16(e). The optimal results of VGG16 are precession, recall, 
and f1_scores are shown in Figure 16(e).
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Table 14
Comparing the performance measure of classification models at three different dimension reduction levels, 
including without dimension reduction 
Dimension 
reduction

level

Features/ 
components

Model Training 
accuracy

Training
loss

Validation
accuracy

Validation
loss

Weighted 
average 

F1_score
0 25088 VGG16 99.91 0.0125 94.80 0.18 94.82
1 10783 SVC 99.16 - 95.13 - 95.12
2 5720 MLP 99.99 0.002 95.24 0.17 95.22
3 1145 MLP 99.98 0.0067 95.68 0.16 95.66
3 1145 VGG16 100.0 0.0016 95.79 0.15 95.80

Table 15 
Comparing the parameters, training time, and storage space of classification models at three different dimension 
reduction levels, including without dimension reduction 

Dimension 
reduction

level

Validation 
samples-903 

(0.05%) 

Training 
time

(HH:MM:SS)

Total 
parameters 

Trainable 
parameters

Non-
trainable 

parameters

Storage 
Space 
(MB)

CP WP

0 856 47 23:30:33 134,301,514 119,586,826 14,714,688 968 

1 859 44 0:42:40 - - - 626 

2 860 43 0:04:06 21,967,754 21,967,754 0 260 

3 864 39 0:04:59 15,193,098 15,193,098 0 115 

3 865 38 0:58:37 21,516,298 21,516,298 0 164 
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Figure 12. Comparison of results at three different dimension reduction levels
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Figure 13. Training and validation loss: (a) without dimensionality reduction; (b) at principal components 
5720 by MLP; (c) at optimal features 1145 by MLP; (d) at optimal features 1145 VGG16

(a) (b) (c) (d)

(a) (b) (c) (d)
Figure 14. Training and validation accuracy: (a) without dimensionality reduction; (b) at principal components 
5720 by MLP; (c) at optimal features 1145 by MLP; (d) at optimal features 1145 by VGG16  
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  Confusion Matrix of MLP at Principal components 5720  
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 Confusion Matrix of MLP at optimal features 1145  
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 Confusion Matrix of VGG16 at optimal features 1145  
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Figure 15. Confusion matrices: (a) VGG16 without dimension reduction; (b) SVC at non correlated feature 
10783; (c) MLP at principal components 5720; (d) MLP at optimal features 1145; (e) VGG16 at optimal 
features 1145.                                         
Note. T.B=Tomato Bacterial spot; T.E=Tomato Early blight; T.L=Tomato Late blight; T.Le=Tomato_ 
Leaf Mold; T.Se=Tomato_Septoria_leaf_spot; T.Sp=Tomato_Spider_mites Two-spotted_spider_mite; 
T.T=Tomato_Target Spot; T.T.Y=Tomato Tomato Yellow_Leaf_Curl_Virus; T.M=Tomato Tomato mosaic 
virus; T.H=Tomato_healthy 

 

Classification Report of VGG16 at extracted features 25088  
(Without dimension reduction)  

Classes Precision Recall  F1_Score Support 
T. B 0.9906 0.9906 0.9906 106 
T. E 0.7407 0.8000 0.7692 50 
T. L 0.9630 0.8211 0.8864 95 
T. Le 0.7966 1.0000 0.8868 47 
T. Se 0.9643 0.9205 0.9419 88 
T. Sp 0.9412 0.9639 0.9524 83 
T. T 0.9130 0.9000 0.9065 70 

T.T. Y 0.9888 0.9963 0.9925 267 
T.M 1.0000 1.0000 1.0000 18 
T. H 1.0000 0.9873 0.9936 79 

     
Accuracy   0.9480 903 

Macro AVG 0.9298 0.9380 0.9320 903 
Weighted AVG 0.9511 0.9480 0.9482 903 

 
Classification Report of SVC at Non-correlated feature 10783  

Classes Precision Recall  F1_Score Support 
T. B 0.9907 1.0000 0.9953 106 
T. E 0.7755 0.7600 0.7677 50 
T. L 0.9326 0.8737 0.9022 95 
T. Le 0.8364 0.9787 0.9020 47 
T. Se 1.0000 0.9091 0.9524 88 
T. Sp 0.9405 0.9518 0.9461 83 
T. T 0.9014 0.9143 0.9078 70 

T.T. Y 0.9815 0.9963 0.9888 267 
T.M 1.0000 1.0000 1.0000 18 
T. H 1.0000 1.0000 1.0000 79 

     
Accuracy   0.9513 903 

Macro AVG 0.9359 0.9384 0.9362 903 
Weighted AVG 0.9523 0.9513 0.9512 903 
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Classification Report of MLP at Principal components 5720  

Classes Precision Recall  F1_Score Support 
T. B 0.9907 1.0000 0.9953 106 
T. E 0.8085 0.7600 0.7835 50 
T. L 0.9770 0.8947 0.9341 95 
T. Le 0.8519 0.9787 0.9109 47 
T. Se 0.9759 0.9202 0.9474 88 
T. Sp 0.9512 0.9398 0.9455 83 
T. T 0.8514 0.9000 0.8750 70 

T.T. Y 0.9888 0.9963 0.9925 267 
T.M 1.0000 1.0000 1.0000 18 
T. H 0.9634 1.0000 0.9814 79 

     
Accuracy   0.9524 903 

Macro AVG 0.9359 0.9390 0.9365 903 
Weighted AVG 0.9533 0.9524 0.9522 903 

 
Classification Report of MLP at optimal features 1145  

Labels Precision Recall  F1_Score Support 
T. B 0.9906 0.9906 0.9906 106 
T. E 0.8750 0.8400 0.8571 50 
T. L 0.9663 0.9053 0.9348 95 
T. Le 0.8824 0.9574 0.9184 47 
T. Se 0.9529 0.9205 0.9364 88 
T. Sp 0.9512 0.9398 0.9455 83 
T. T 0.9130 0.9000 0.9065 70 

T.T. Y 0.9926 1.0000 0.9963 267 
T.M 0.9474 1.0000 0.9730 18 
T. H 0.9294 1.0000 0.9634 79 

     
Accuracy   0.9568 903 

Macro AVG 0.9401 0.9453 0.9422 903 
Weighted AVG 0.9571 0.9568 0.9566 903 
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Pertanika J. Sci. & Technol. 31 (2): 813 - 841 (2023) 837

A Novel Approach for Multi-Level Dimensional Reduction
 

Classification Report of VGG16 at optimal features 1145  
Classes Precision Recall  F1_Score Support 

T. B 0.9906 0.9906 0.9906 106 
T. E 0.8148 0.8800 0.8462 50 
T. L 0.9556 0.9053 0.9297 95 
T. Le 0.8824 0.9574 0.9184 47 
T. Se 0.9639 0.9091 0.9357 88 
T. Sp 0.9405 0.9518 0.9461 83 
T. T 0.9265 0.9000 0.9130 70 

T.T. Y 0.9925 0.9963 0.9944 267 
T.M 1.0000 1.0000 1.0000 18 
T. H 0.9753 1.0000 0.9875 79 

     
Accuracy   0.9579 903 

Macro AVG 0.9442 0.9490 0.9462 903 
Weighted AVG 0.9588 0.9579 0.9580 903 

(e)
Figure 16. Classification reports: (a) VGG16 without dimension reduction; (b) SVC at non correlated feature 
10783; (c) MLP at principal components 5720; (d) MLP at optimal features 1145; (e) VGG16 at optimal 
features 1145
Note. T.B=Tomato Bacterial spot; T.E=Tomato Early blight; T.L=Tomato Late blight; T.Le=Tomato_ 
Leaf Mold; T.Se=Tomato_Septoria_leaf_spot; T.Sp=Tomato_Spider_mites Two-spotted_spider_mite; 
T.T=Tomato_Target Spot; T.T.Y=Tomato Tomato Yellow_Leaf_Curl_Virus; T.M=Tomato Tomato mosaic 
virus; T.H=Tomato_healthy

Table 16
Comparison of the performance measures of proposed models with previous models on 18169 images of the 
tomato dataset 

Methods Training
accuracy 

(%)

Train
loss

Validation
accuracy 

(%)

Validation
loss

Weighted 
average 

F1_score 
(%)

DNN (Gadekallu et al., 2021) 99 NA 94 NA NA
Variation of the LeNet
(Tm et al., 2018)

99.3 NA 94.8 NA 94.81

Squeeze Net
(Durmus et al., 2017)

NA NA 94.3 NA NA

AlexNet (Durmus et al., 2017) NA NA 95.65 NA NA
Filter+PCA+Boruta 
(proposed)+MLP

99.98 0.0067 95.68 0.16 95.66

Filter+PCA+Boruta 
(proposed)+VGG16

100.0 0.0016 95.79 0.15 95.80
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Table 17
Comparison of the parameters, training time, and storage space of proposed models to previous models on 
18169 images of the tomato dataset 

Methods Total
parameters

Trainable 
parameters

Non-
Trainable 

parameters

Train
Time

(HH:MM: 
SS)

Storage
Space 
(MB)

DNN (Gadekallu et al., 
2021)

NA NA NA NA  NA 

variation of the LeNet 
(Tm et al., 2018)

NA NA NA NA NA

Squeeze Net (Durmus 
et al., 2017)

NA NA NA NA 2.9 

AlexNet (Durmus et al. 
2017)

NA NA NA NA 227.6 

Filter+PCA+Boruta 
(proposed)+MLP

15,193,098 15,193,098 0 0:04:59 115 

Filter+PCA+Boruta 
(proposed)+VGG16

21,516,298 21,516,298 0 0:58:37 164 

94
94.3

95.65 95.68 95.79

93
93.5

94
94.5

95
95.5

96

DNN Seqeeze Net AlexNet Proposed(MLP) Proposed(VGG16)

Va
lid

at
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n 
Sc
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e

Deep Learning Models

Figure 17. Comparison of the validation accuracy of the proposed models with previous models

Comparison of the Validation Accuracy of the Proposed Model with Previous 
Models

The performance of the proposed models was compared to the previously proposed DL 
models: DNN, SeqeezeNet, and AlexNet. Figure 17 shows the comparison of the proposed 
model to previous models on tomato images of the Plant Village dataset. Tables 16 and 
17 show the comparison output of proposed models with previously developed models of 
train accuracy, train loss, validation accuracy, validation loss, weighted average f1_score, 
trainable parameters, non-trainable parameters, and storage space. The highest validation 
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accuracy of 95.68% and 95.79% and the highest weighted average F1_score of 95.66% and 
95.80% were obtained in the proposed multi-level dimension algorithm by MLP and 3fc 
of VGG16, respectively. The validation accuracy of the proposed models was improved 
compared to that of the previous models, such as DNN (94%), SqueezeNet (94.3%), and 
AlexNet (95.65%). 

CONCLUSION 

In the present study, multi-level dimensionality reduction-based algorithms, Filter and PCA, 
and Boruta feature methods were developed to obtain optimal features. The classification 
performance of VGG16, MLP, and MLA was compared at each level of optimal features. 
Finally, it was concluded that level 3 of dimension reduction provides 1145 optimal features, 
recorded as the best among all the previous studies. MLP and VGG16 provided the best 
validation accuracy of 95.68% and 95.79%, respectively. 

FUTURE RESEARCH DIRECTION

The present study examined the prediction of tomato leaf diseases based on the proposed 
multi-level dimension reduction algorithm. Therefore, in future studies, a robust model 
may be developed by adding other dimension reduction techniques, such as particle swarm 
optimization (PSO), linear discernment analysis (LDA), and autoencoders to overcome 
the overfitting problem and identify the diseases in plants, crops, and vegetables based on 
the images and prevent crop loss at an early stage in favor of farmers. A minor limitation 
in the proposed approach is that the Filter method for identifying non-correlated features 
and the Boruta feature selection algorithm for obtaining the optimal features are time-
consuming processes.
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